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Abstract

-We-provef/ classical limit theorem on characteristic functions

by using duality between a pair of optimization problems, one of

which is an infinite dimensional minimization involving the relative

entropy functional.
. /

KEY WORDS: Characteristic Functions, Optimization in infinite

dimensional spaces, Duality, Relative Entropy.
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Introduction

Modern optimization theory has been employed successfully in many

diverse fields such as Economics, Physics, Statistics, Biology and

Engineering. This paper is a small step toward demonstrating the use

of optimization theory as proof mechanism in Probability.

The result from Probability Theory in question here is a limit

theorem on characteristic functions. Let X be a random variable with

distribution F , support Ix ,X ] and characteristic function
x L R

*(t) itX

Then

xR - lim 1 log *(-iy)

xL - -lim 1 log *(iy)
L 0 y

The result is given in Lucas' classical book "Characteristic Functions"

[3]; first a weaker result, concerning only analytic characteristic functions,

is proved in Chapter 7. The full statement is given in Chapter 11, as part

of Theorem 11.1.2. It is derived from the result in Ch. 7 via a chain of

lemmas on boundary characteristic functions.

Here we prove the above limit theorem by using duality relations

between two extremum problems. One of these problems is an infinite-

dimensional convex program involving the minimization of the relative

entropy functional, which is of dundamental importance in Statistical

Information Theory, Thermodynamics and Communication Theory.

The plan of the paper is as follows: Section 1 gives a formal

statement of the limit theorem (Theorem A). Section 2 gives the duality
'*.

theorem (Theorem B), which is in fact an adaptation of a result in the

authors' paper 11]. In Section 3 we prove Theorem A via Theorem B.

'1d



-2-

1. A limit theorem on characteristic functions

Let X be a random variable, and F xW) its distribution function.
X

Let *(t) denote the characteristic function of FX, i.e.

i (t) = I e t X dF (x)

The ieft extremity of Fx is the number xL with the property

YV > 0- Fx (X L-E) = 0 , F X(XL+) > 0

and the right extremity of F is the number XR with the property

cV > 0 : Fx (x R - ) < 1 Fx (xR ) = 1

The interval [xLXR] is the support of Fx , Clearly
L R jXc .'-.X R i t x

*(t) = f e- dF x x)
XLX

F is bounded to the left if x >-- and bounded to the right if
XL

XR<

Theorem A. If Fx be bounded to the right, then its right extremity

iS given by

( m - log ij(-iy)
y14 Y

If F is bounded from the left, then its left extremity is given by
1

(12) x L -- lim 1 log (y),(2) XL y

2. A duality theorem on relative entropies

Let D be the class of generalized densities f = (Radon-NikOdymdt

4' derivatives) of distribution functions F, on a given probability
dF s

space, with support ExLIR In particular Fx E D and f--
L'xR XX dt

4.A... %.%~ :-:'q~ . KvV
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is the corresponding density. The relative entropy (divergence,

.,,' Kullback-Leibler distance) between F E D and F is given by the

quantity

xR f(t).1 (lf f x X I fltllogl f ]dt.

XL X

It is well known that I(";fx) is a nonnegative convex functional

and is equal to zero if and only if f - fx (a.e. with respect to dt)

see [2].

A special case of a problem studied in [l,Ch.3] is the infinite-dimensional

convex program

x 

aR
(E) inf{(f,fx) : I g(t)f(t)dt > a)

fED X '

/ where g(t) is a. given sumable function. It was shown in [1] that a dual
problem is given by

xRy9(t)1(H) sup~ay-log I e f x(t).dt)
yO X K

Moreover, from Th. 1 in I1] the following duality relations hold

- I between (E) and (H).

Theorem B. If (E) is feasible then inf (E) is attained, sup(H) is

finite and

min (E) - sup (H)

3. Proof of Theorem A via Theorem B

First note that the trivial inequality

Vy > 0 Zyx < *Yx R
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implies

lir 1 log E e -XR
y4

i.e.

(3) lim 1_ log h(-iy) < •

*IVMYy- xR

Consider now the problem

XR

-~(E ) inffl(fif): f tf(t)dt > x RfED xL

for some fixed c > 0 . This is a special case of problem (E) with

g(t) t a - xR - C . The dual is

X R yt

sup(y(xR-C) - log R e f xt)dt}

i.e.

(D ) sup{y(xR-C) - log *(-iy)}
y;>O

Problem (E) is clearly feasible for every c > 0 , and we infer from

Theorem B:

s~p(D ) > lim(y(x.-) - log *(-iy)} -

lim yIxR7 - 11g i (-iy)]
y*4

Vow, .for the limit to be finite, it is necessary that:

(4) xR - C < lim 1Y log *(-iy) €•0.
- y.wq

Combining (3) and (4) we obtain equation (1).
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To prove equation (2) we note that the inequalit r

is trivial, while the inequality

(6) -lim 1 log 4i(iy) xL + E V E > 0
y-*a. Y L

follows by applying Theorem B (in the above manner) to the dual pair:

X R
J%" inf{i(f,fx) x J tf(t)dt >xL - c)

4L

sup{-y(XL+E) - log *(iy)}

y>O

Now, (5) and (6) indeed imply (2) , and the proof of Theorem A is

thereby completed.
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